
CSC494 Project: Branching Program Complexity for the Height 4

Tree Evaluation Problem

Eric Bannatyne

May 24, 2016

1 Introduction

One of many major open problems in complexity theory consists in understanding the relationship between

the complexity classes L, NL, and P. It is a well-known fact that L ⊆ NL ⊆ P, however it is unknown

whether any of these inclusions is proper. This has prompted numerous attempts to either prove that two of

these classes are equal, or to provably separate them. This problem of separating L andNL from Pmotivates

the study of the Tree Evaluation Problem (TEP), introduced by Cook et al. in [2]. The TEP is known to

be solvable in polynomial time, using a standard black pebbling algorithm, however it is conjectured that

the problem is neither in L nor in NL. In order to prove superlogarithmic space lower bounds for FTh
d(k)

(using the notation from [2]), it suffices to prove a lower bound of Ω(kr(h)) for the number of states required

by a branching program solving FTh
d(k), for some unbounded function r(h).

Although the general problem has so far resisted proof, it has been possible to prove good lower bounds on

the sizes of branching programs solving the TEP in a number of restricted models, such as thrifty branching

programs [2] and read-once branching programs [3, 1]. For general branching programs, lower bounds are

known for certain special cases of the TEP, including FT 3
2(k), the height 3 TEP, as well as Children4

2(k),

the problem of determining the values of the children of the root node in a height 4 tree. We hope to extend

these results in order to prove good lower bounds for the height 4 TEP, by studying various restricted models

and special cases of the general problem.

2 The Tree Evaluation Problem

The setup of the problem is as follows: Given d, h ≥ 2, we write Th
d to denote the perfect d-ary tree of height

h, where the height of a tree refers to the number of levels in the tree. We focus mainly on the case when

d = 2. The nodes vi of T
h
d are numbered in heap style, so that the root node is v1, and when d = 2, the left

and right children of node vi are v2i and v2i+1, respectively. The tree evaluation problem FTh
d(k) for the

tree Th
d is defined as follows:

Definition 1 (The Tree Evaluation Problem). Let d, h ≥ 2. An input I to FTh
d(k) encodes the following

information:

1. A function f I
i : [k]d → [k] for every internal node vi of T

h
d , and

2. an element of [k] for every leaf of Th
d .

We associate with every node vi of Th
d a value vIi . If vi is a leaf labeled with the value a ∈ [k], then

vIi = a. If vi is an internal node with children vj1 , . . . , vjd , then vIi = f I
i (v

I
j1
, . . . , vIjd). The goal of FTh

d(k)

on input I is to compute the value vI1 of the root.

1

f1

f2

f4

v8 v9

f5

v10 v11

f3

f6

v12 v13

f7

v14 v15

Figure 1: An illustration of the input to the height-4 TEP FT 4
2(k).

Figure 1 shows an illustration of the TEP for the case d = 2 and h = 4. As the reader should verify,

there is a straightforward polynomial-time algorithm to compute FTh
d(k).

2.1 Branching Programs

Branching programs are a model of computation that can be thought of as a generalization of decision trees,

in which the underlying graph is allowed to be a directed acyclic graph instead of a tree. A branching

program contains a finite set of states, represented as nodes in a DAG. For our purposes, a state can either

query the value of a leaf vi of Th
d , or it can query the value of the function fi(a1, . . . , ad) for some fixed

values a1, . . . , ad ∈ [k], or it can be an output state. For every query state γ, there are k edges from γ going

to other states, corresponding to the possible results of the query made by γ. There are exactly k output

states, one for each value in [k], with no out-edges. Finally, there is a single starting state, with no edges

entering that state.

Given a branching program and an input I to FTh
d(k), the computation C(I) is a path in the graph

of the branching program, defined as one might expect: Beginning at the start state, we follow the edge

corresponding to the result of the current state’s query, and we continue until we reach an output state.

For a more precise definition of the computational model, see [2]. Note that branching programs are a

nonuniform model of computation, meaning that we can have a different branching program solving FTh
d(k)

for every value of k. For any given degree d and height h, we are interested in the size that a branching

program solving FTh
d(k) must have as k increases.

In [2], Cook et al. proved that any branching program (as defined above) solving FT 3
2(k) requires at

least k3/ log k states.

3 Restricted Lower Bounds for FT 4
2(k)

In this section, we present proofs of several lower bounds on the number of branching program states needed

to solve the problem FT 4
2(k) for height 4 trees, under various restrictions on the branching programs used

to solve FT 4
2(k). These restrictions can be viewed as placing constraints on how and when the branching

program queries the root function. Indeed, the problem of proving lower bounds for the height 4 problem

seems to be much difficult when the branching program’s root queries are unconstrained, since it becomes

much more difficult to reason about what information the branching program must learn in order to determine

the correct output. However, we will see that if we make certain assumptions on the model it becomes possible

2

to prove the desired lower bound of Ω(k4) states to solve FT 4
2(k). Throughout this section, we assume that

the root function f1 is given as part of the input to FT 4
2(k).

3.1 Root Function Queried Last

We first consider the restriction that the branching program used to solve FT 4
2(k) makes all of its root

function queries after all other (i.e. non-root) queries have been made. This corresponds to our intuition

that querying the root function before knowing the values of its children should not enable the branching

program to learn enough about the input in order to determine the correct output. In this setting, we

can show that any branching program that solves FT 4
2(k) must, at some point, learn the values of the

children of the root, which we know from [2] to require k4/2 states. The general method behind this lower

bound proof is to use an adversarial path switching argument to show that any computation path on the

branching program must have some state at which the children are known. From there, we can then convert

the branching program solving FT 4
2(k) to one that solves Children4

2(k), for which we already have a lower

bound.

Theorem 1. Let B be a deterministic k-way branching program solving FT 4
2(k), such that for every input I,

the computation C(I) of B on I is a sequence of states γ1, γ2, . . . , γR, . . . , γT , where the states γ1, . . . , γR−1

do not query the root function, and the states γR, . . . , γT−1 consist only of root queries, and γT is an output

(sink) state. Then B has at least Ω(k4) states.

Proof. In order to prove this statement, we can describe a method for converting the branching program B,

solving FT 4
2(k), into a deterministic branching program B′ that solves Children4

2(k). We can then use the

known lower bound of k4/2 for Children4
2(k) to derive a lower bound for FT 4

2(k) in this restricted model.

For any input I to B, let γI
r denote the first state that queries the root function on the computation

path C(I) of B on input I. We shall argue that, when the computation reaches the state γI
r , the branching

program must “know” the values vI2 and vI3 of the left and right children of the root, respectively. To show

this, we make the following claim:

Claim 1. Let I and J be inputs to B such that (vI2 , v
I
3) ̸= (vJ2 , v

J
3). Then γI

r ̸= γJ
r .

To prove this claim, assume for a contradiction that I and J are inputs to B such that (vI2 , v
I
3) ̸= (vJ2 , v

J
3),

but γI
r = γJ

r . We can adversarially construct inputs I ′ and J ′ as follows:

1. vI
′

i = vIi and vJ
′

i = vJi for 8 ≤ i ≤ 15,

2. f I′

i (a, b) = f I
i (a, b) and fJ′

i (a, b) = fJ
i (a, b) for 2 ≤ i ≤ 7 and a, b ∈ [k],

3. f I′

1 (vI
′

2 , vI
′

3) = fJ′

1 (vI
′

2 , vI
′

3) = 0, and fJ ′

1 (vJ
′

2 , vJ
′

3) = f I′

1 (vJ
′

2 , vJ
′

3) = 1,

4. f I′

1 (a, b) = fJ ′

1 (a, b) for all a, b ∈ [k].

The first two lines of this construction assert that the leaf values and non-root functions of I ′ and J ′ are

identical to those of I and J , respectively. The last two lines ensure that I ′ and J ′ both have identical root

functions, but have different root values. In particular, lines 1 and 2 imply that vI
′

i = vIi and vJ
′

i = vJi for

j ∈ {2, 3}, so (vI
′

2 , vI
′

3) ̸= (vJ
′

2 , vJ
′

3), meaning that lines 2 and 3 do not conflict with one another.

The computation path C(I ′) must be identical to C(I) up until the state γI
r is reached, since I ′ agrees

with I on all non-root values. Similarly, the computation of the input J ′ will follow the same path as that

of J up until the computation reaches γJ
r . Therefore γI′

r = γI
r = γJ

r = γJ′

r . Moreover, since γI′

r makes a root

query, all states following γI′

r on any computation path must also only make root queries. However, because

I ′ and J ′ have identical root functions, their computations must follow the same path, and in particular

3

they must reach the same final output state. Therefore B must output an incorrect answer on one of these

inputs.

Using the above claim, we can convert B to a new deterministic k-way branching program B′ that solves

Children4
2(k): For every input I, simply replace the state γI

r with an output state corresponding to the pair

(vI2 , v
I
3). Then B′ correctly solves Children4

2(k), since, by the claim, the state γI
r is only ever reached by

inputs J such that vJi = vIi for i ∈ {2, 3}. Therefore, we know that B′ has at least k4/2 states, and so it

follows that B must also have at least k4/2 states.

3.2 All Root Queries Are Thrifty

For any internal node i of an input I to FT 4
2(k), we say that a query of the form fi(a, b) for a, b ∈ [k] is

thrifty if (a, b) = (vI2i, v
I
2i+1), the correct values of the children of node i. If we assume that all function

queries made by the branching program are thrifty, then it is possible to prove that Ω(kh) states are required

for all heights h. However, in the case of h = 4, it suffices to assume that all root function queries are thrifty,

via a simple application of the lower bound for Children4
2(k).

Theorem 2. Let B be a deterministic k-way branching program solving FT 4
2(k) such that, on every com-

putation, all root queries are thrifty. Then B has at least Ω(k4) states.

Proof. Again, we will show that B can be converted to a branching program B′ that solves Children4
2(k).

To achieve this, observe that for any input I the computation C(I) must include at least one root query.

Moreover, if C(I) visits a state querying f I
1 (a, b) for some values a, b ∈ [k], then it must be the case that

a = vI2 and b = vI3 , since all root queries are assumed to be thrifty. Therefore we can simply replace every

such root query state with an output state whose value is the pair (a, b). The resulting deterministic k-way

BP solves Children4
2(k), for which we can apply the existing lower bound, from which it follows that B has

at least k4/2 states.

3.3 Restricted Thrifty Root Queries

In principle, it may intuitively seem reasonable to assume that all queries made by a branching program are

thrifty queries. Any branching program implementing the black pebbling algorithm is a thrifty branching

program, and is conjectured to be optimal for solving FTh
d(k) in general. In practice, though, this may not

be a reasonable assumption to make, because if a branching program is non-thrifty, that does not necessarily

rule out the possibility that it can learn complex relationships between the values of certain nodes without

directly computing the values of their children. However, it is easy to show that any branching program

solving FTh
d(k) must have at least one thrifty root query on every computation path (otherwise an adversary

could change the value of the root, and the branching program would be none the wiser). In this case, rather

than assuming that all root queries are thrifty, we allow some root queries to be non-thrifty, however we

restrict the position of the thrifty root query on a given computation path, namely, we assume that the

thrifty root query occurs after all non-root queries have been made. This restriction alone has not proven

to be sufficient to prove an Ω(k4) lower bound. However, if we combine this restriction with the assumption

that each possible value of the root node is read-once, then we can prove the following lower bound.

Theorem 3. Let B be a deterministic k-way branching program solving FT 4
2(k), such that for every input

I, and a, b ∈ [k], the computation path C(I) queries the value of f1(a, b) at most once, and the thrifty query

to f I
1 (v

I
2 , v

I
3) may only occur after all non-root queries have been made. Then B has at least Ω(k4) states.

Proof. Let I be an input to FT 4
2(k), and let γ be the state making the thrifty root query (i.e. γ queries

f I
1 (v

I
2 , v

I
3)) on the computation path C(I), and let J be some input such that C(J) also visits γ. We claim

that vI2 = vJ2 and vI3 = vJ3 . We will assume that this is not the case, in hopes of obtaining a contradiction.

4

First, we observe that every state that is a descendant of γ in the underlying DAG of B must query the

root function. Since the root function is read-once, this means that any possible sequence of states following

γ must be consistent with any computation path leading up to γ. In particular, we can construct new inputs

I ′ and J ′ that will follow the same paths as I and J up to γ, which will be forced to follow the same path

after γ.

Let Q be the set of all pairs (a, b) ∈ [k]2 such that the value f1(a, b) is queried by γ or by some state that

is a descendant of γ. Now define inputs I ′ and J ′ so that I ′ is identical to I, and J ′ is identical to J , with

the exception that f I′

1 (vJ2 , v
J
3) = fJ ′

1 (vJ2 , v
J
3) = 1, and f I′

1 (a, b) = fJ′

1 (a, b) = 0 for all (a, b) ∈ Q−{(vJ2 , vJ3)}.
Since I ′ and J ′ agree on all inputs to the root function in Q, their computations must follow the same

path after γ, and they must ultimately reach the same output state. However, since (vI2 , v
I
3) ∈ Q−{(vJ2 , vJ3)},

and we also have (vI
′

2 , vI
′

3) = (vI2 , v
I
3) and (vJ

′

2 , vJ
′

3) = (vJ2 , v
J
3), it follows that our new inputs have root values

vI
′

1 = 0 and vJ
′

1 = 1. Therefore B must output an incorrect answer on either I ′ or J ′. So it must be the case

that vI2 = vJ2 and vI3 = vJ3 .

Therefore, for any input I, there must be some state γ (i.e. when the thrifty root query is made) at

which point the computation “knows” the values of the children vI2 and vI2 . We can therefore convert B to a

branching program B′ solving the problem Children4
2(k) by replacing γ with an output state labeled (vI2 , v

I
3).

Thus B′ is obtained by repeating this process for every possible input I. It then follows that the existing

k4/2 lower bound for the number of branching program states needed to solve Children4
2(k) also applies to

the number of states in B.

So far all of our lower bound proofs have consisted of showing that a branching program with certain

restrictions solving FT 4
2(k) must do so by first solving the Children4

2(k) problem, and then applying the known

lower bound for that problem. However it is possible to approach this problem from another perspective, by

examining the number of leaf queries required for solving FT 3
2(k). In the next section, we will show that a

lower bound of Ω(k2) on the number of states querying leaves required to solve FT 3
2(k) would imply that

solving FT 4
2(k) requires Ω(k4) states. However, this next lower bound is included in this section because

it assumes the same set of restrictions on the branching program as in Theorem 3. In fact, the following

result implies Theorem 3, as we shall see later. Moreover, it is interesting to note that the proof of this

result differs from the lower bound proofs we have seen so far, in that we use a tag argument to show that

the branching program requires at least k2/2 states, as opposed to converting the branching program to one

solving Children4
2(k).

Theorem 4. Let B be a deterministic k-way branching program solving FT 3
2(k), such that for every input

I, and a, b ∈ [k], the computation path C(I) queries the value of f1(a, b) at most once, and the thrifty query

to f I
1 (v

I
2 , v

I
3) may only occur after all non-root queries have been made. Then B has at least k2/2 states that

query leaf values.

Proof. Let E be the set of all inputs I to FT 3
2(k) such that f I

2 = f I
3 = +k (addition mod k). Let Γ be the

set of all states in B that query leaf values, and assume for a contradiction that |Γ| < k2/2.

For every input I ∈ E, let T (I) = (γI , vIi), where γI is the last state on the computation C(I) that

queries a leaf, and i ∈ {4, 5, 6, 7} is the node queried by γI . Moreover, we define a second tagging function

U such that for any input I,

U(I) =

{
(vI4 , v

I
5 , v

I
3) if γI queries node 4 or 5

(vI6 , v
I
7 , v

I
2) otherwise.

Next, we can show that the image of E under U must have at least k3/2 distinct triples. To prove this

claim, let E′ ⊆ E be the set of all inputs I where nodes 4, 5, 6 and 7 have the form a, b, a, c for a, b, c ∈ [k].

5

Then if I ∈ E′, either U(I) = (a, b, a+k c) or U(I) = (a, c, a+k b). There are a total of k3 distinct triples of

either formr, and at least half of the triples must be from one of the two forms, so |U(E)| ≥ |U(E′)| ≥ k3/2.

However, by the assumption that |Γ| < k2/2, there are strictly fewer than k3/2 possible values for T (I)

over all inputs I ∈ E. It follows that there must be inputs I, J ∈ E such that U(I) ̸= U(J) but T (I) = T (J),

i.e. (γI , vIi) = (γJ , vJj), and thus i = j. This implies that either vI2 ̸= vJ2 or vI3 ̸= vJ3 . This is because if we

fix either node 2 or 3 to some value, then fixing the values of one of its children determines the value of the

other child. Thus I and J have different children values, that is, (vI2 , v
I
3) ̸= (vJ2 , v

J
3).

Since I and J both reach the state γI on their last leaf query and follow the same edge out of γI , it

is possible to choose values of the root functions (using the fact that the root is read once, and I and J

have identical functions at nodes 2 and 3) so that C(J) must visit the state on C(I) at which the thrifty

root query occurs for I. However, using an argument identical to that of Theorem 3, it is possible to choose

the values of I and J so that vI1 ̸= vJ1 , but C(I) and C(J) reach the same final output state, yielding a

contradiction. Therefore B must have at least k2/2 states that query leaf values.

4 Lower Bounds on Leaf Queries With Fixed Functions

The next two results, originally from [1], show that it is possible to prove a lower bound of Ω(ke) for the

number of branching program states required to solve the height h TEP FTh
2 (k) by proving a lower bound

of Ω(ke−2) on the number of states querying leaves required to solve the height h− 1 problem FTh−1
2 (k).

Theorem 5. Let h ≥ 3 and let B be a deterministic branching program with s states solving FTh
2 (k). Then

B can be transformed into a deterministic branching program B′ solving FTh−1
2 (k) in which the number of

states querying leaves is at most s/k2.

Proof. Let B be a branching program with s states that solves FTh
2 (k). Then there exists some r, r′ ∈ [k]

such that at most s/k2 states that make queries of the form fj(r, r
′), where j is a node at level 2 of the tree

(i.e. the children of node j are leaves). We can construct a branching program B′ solving FTh−1
2 (k) with

at most s/k2 states that query leaves. Intuitively, this is achieved by simulating B for the case in which, for

each node j at level 2, the function fj is such that fj(r, r
′) is the value of the leaf j in Th−1

2 and fj(a, b) = 1

for all (a, b) ̸= (r, r′), and the children of node j have the values (v2j , v2j+1) = (r, r′).

To construct B′, replace every state of B that queries fj(r, r
′), where j is a level-2 node of Th

2 , with one

that makes the leaf query vj . Then remove every state γ querying fj(a, b) for (a, b) ̸= (r, r′), and reroute

all edges into γ to the destination of the edge labeled 1 leaving γ. Finally, remove every state δ querying a

leaf of Th
2 , and replace every edge into δ by sending it to the destination of the outedge of δ labeled r or r′

depending on whether the leaf is a left or right child, respectively.

Theorem 6. Let h ≥ 3 and let B be a deterministic branching program solving FTh−1
2 (k) with s states that

query leaves and O(sk2) states in total. Then B can be converted to a deterministic branching program B′

which solves FTh
2 (k) with O(sk2) states.

Proof. Given B, one can construct B′ by simply replacing every state of B making a leaf query with a

subprogram that evaluates the corresponding level-2 node in Th
2 . Each such subprogram requires O(k2)

states, giving O(sk2) states overall.

Treating the functions at the internal nodes of the tree Th
2 as fixed enables us to study branching programs

that only make leaf queries. This approach was used by James Cook and Siu Man Chan in [1] to prove a

lower bound of Ω(kh) states for deterministic read-once branching programs solving FTh
2 (k). In their lower

bound proof, they consider the internal functions of Th
2 to be polynomials over the finite field GF (k) for

k = 2d > 3h−1, where d is an odd positive integer. The internal nodes are fixed to be the Siu Man polynomial

6

f1

+

v4 v5

+

v6 v7

Figure 2: The tree T 3
2 with the root node fixed to be the Siu Man polynomial f1(a, b) = a3 + b3 over GF (k),

and the children of the root fixed to be addition.

fi(a, b) = a3 + b3 over GF (k). The Siu Man polynomial has a number of useful properties. First, if either

argument is fixed, it becomes a permutation polynomial in one variable. Moreover, we can consider the

last-leaf function f(x), which outputs the value of the root depending x, the value of the last leaf j queried

by a branching program, after all of the other leaves have been queried. The crucial property of the Siu

Man polynomial is that every possible setting of the tuple (s1, . . . , sh−1) yields a different function f , where

s1, . . . , sh−1 are the siblings of the nodes along the path from the leaf j to the root. Then it follows that the

branching program must know the values of s1, . . . , sh−1 in order to determine the correct output.

In the rest of this section, we focus our attention on trying to prove an Ω(k2) lower bound on the number

of leaf queries for the height 3 case FT 3
2(k), with the root function fixed to be the Siu Man polynomial

f1(a, b) = a3 + b3, and f1(a, b) = f2(a, b) = a + b over GF (k), where k = 2d > 3h−1 for some odd positive

integer d, as illustrated in Figure 2. Since the functions are all fixed, the input consists simply of the

quadruple (v4, v5, v6, v7) of leaf values, and any branching program can only make leaf queries.

4.1 Branching Program Tables

One strategy proposed by David Liu for proving lower bounds for the tree evaluation problem involves

associating with every state and every edge of a branching program solving FTh
d(k) a table that encodes the

possible values of certain “critical” nodes. For now we will restrict our attention to branching programs B

solving the problem FT 3
2(k), under the following restrictions:

1. k = 2d, where d ≥ 5 is an odd positive integer,

2. f1(a, b) = a3 + b3 (the Siu Man polynomial) and f2(a, b) = f3(a, b) = a+ b for all a, b ∈ [k], where the

operations are considered to be over the field F = GF (k),

3. For every input I to B, v7 is the last leaf queried on C(I).

Let B be a deterministic k-way branching program solving FT 3
2(k) with the above restrictions, and let

γ be any state of B.

Definition 2. The table of state γ is a function Tγ : [k]3 → [k] ∪ {∅} such that, for all (v2, v6, v7) ∈ [k]3,

• If there is some input I with (vI2 , v
I
6 , v

I
7) = (v2, v6, v7) such that C(I) reaches γ, then

Tγ(v2, v6; v7) = f1(v2, f3(v6, v7)) = v32 + (v6 + v7)
3.

• Otherwise, Tγ(v2, v6; v7) = ∅ (null, to indicate absence of a value).

7

Definition 3. The table of an edge labeled c ∈ [k] leaving state γ is a function Tγ,c : [k]
3 → [k] ∪ {∅} such

that, for all (v2, v6, v7) ∈ [k]3,

• If there is some input I with (vI2 , v
I
6 , v

I
7) = (v2, v6, v7) such that C(I) reaches γ and vIi = c, where i is

the node queried by γ, then

Tγ,c(v2, v6; v7) = f1(v2, f3(v6, v7)) = v32 + (v6 + v7)
3.

• Otherwise, Tγ,c(v2, v6; v7) = ∅.

A table in this context can be viewed as a 2-dimensional matrix with rows indexed by pairs (v2, v6) and

columns indexed by values of v7. At any given state (resp. edge), the table associated with that state (resp.

edge) provides a tool for visualizing the possible node values of inputs that reach a given state (resp. edge)

as well as the possible root values. The intention is to be able to prove lower bounds on the number of

leaf queries needed for FT 3
2(k) by observing how the tables associated with a branching program transform

on a local scale, which enables us to model information that must be “known” by a portion of a branching

program.

In order to compute the values in the table at a given node, we can apply some simple rules to inductively

compute a node’s table based on local information. As a simple base case, if γ is the initial state of B, then

Tγ is simply a full table, i.e. with no null entries. Note that knowing the values of v2, v6 and v7 is sufficient

to compute the value of the root.

On the other hand, if γ is any other state, then consider all states γ′ and c ∈ [k] such that there is

an edge from γ′ to γ with the label c. Let v2, v6, v7 ∈ [k]. If Tγ′,c(v2, v6; v7) = ∅ for all γ′ and c, then

Tγ(v2, v6; v7) = ∅. Otherwise, Tγ(v2, v6; v7) = Tγ′,c(v2, v6; v7), which will be the same regardless of which γ′

and c are chosen.

We can similarly define rules for determining the tables associated with edges. Let γ be a state of B and

let c ∈ [k]. If γ queries v7, then for all values v2, v6, v7 ∈ [k],

Tγ,c(v2, v6; v7) =

{
Tγ(v2, v6; v7) if v7 = c

∅ if v7 ̸= c.

That is, if we take an edge labeled c exiting a state querying v7, then every column must be filled with

nulls, with the exception of column c. Similarly, if γ queries v6, then we have

Tγ,c(v2, v6; v7) =

{
Tγ(v2, v6; v7) if v6 = c

∅ if v6 ̸= c.

However, if γ queries v4 or v5, then simply knowing the table associated with γ is not sufficient to

determine how to update the tables of edges exiting γ, as these tables do not distinguish between different

values of v4 and v5. This is because, for now, we intend to treat v7 as a “bottleneck node” of sorts, in which

case the actual values of v4 and v5 are, it seems, not significant. In order to derive similar update rules, it

would be necessary to store additional information at each node and edge, encoding the possible values of v4
and v5 that can reach that node or edge. However, this will not be necessary to prove the following result.

Theorem 7. Let B be a deterministic k-way branching program solving the restricted version of FT 3
2(k),

as above. Moreover, assume that v7 is the last leaf to be queried on any computation C(I), and v7 is queried

at most once on every computation. Then B must have Ω(k2) states that query leaves.

8

Proof. Let I be some input to B, and let γ be the final state on C(I) querying a leaf (i.e. assume that γ

queries v7). Since v7 has not been queried before, it must be free to take on any value in [k] at γ. This

means that, for all v2, v6 ∈ [k], if Tγ(v2, v6; v7) = ∅ for some v7 ∈ [k], then Tγ(v2, v6; v7) = ∅ for all v7 ∈ [k].

Likewise, if Tγ(v2, v6; v7) ̸= ∅ for some v7 ∈ [k], then Tγ(v2, v6; v7) ̸= ∅ for all v7 ∈ [k]. In other words,

every row of Tγ either consists entirely of nulls or does not contain any null entries.

Moreover, and this is the crucial property of the Siu Man polynomial that is used in this proof, since every

pair (v2, v6) ∈ [k]2 induces a distinct root function of v7, then every non-null row of Tγ must be distinct. For

every c ∈ [k], the edge labeled c out of γ leads to an output state, all non-null entries in Tγ,c must be the

same. But in Tγ,c, we have Tγ,c(v2, v6; d) = ∅ for all d ̸= c. Suppose, for a contradiction, that (v2, v6) and

(v′2, v
′
6) are pairs corresponding to two different non-null rows in Tγ . Then

Tγ,c(v2, v6; c) = Tγ,c(v
′
2, v

′
6; c)

which implies that

Tγ(v2, v6; c) = Tγ(v
′
2, v

′
6; c).

However, since this must be true for every c, it must follow that Tγ(v2, v6; c) = Tγ(v
′
2, v

′
6; c) for all c ∈ [k],

that is, rows (v2, v6) and (v′2, v
′
6) in Tγ are identical, which is a contradiction. Therefore Tγ can only contain

one non-null row. In other words, only k2 inputs can possibly reach a given state γ querying v7. Since there

are k4 possible inputs to B, it follows that B must contain at least k2 states that query v7.

5 Conclusion

The approach to separating L and NL from P by proving branching program size lower bounds for the Tree

Evaluation Problem has seen some partial success, in the case of trees of height 3, however it has proven

to be a difficult problem to extend these results to trees of height 4 and beyond. Nevertheless, we have

been able to prove Ω(k4) branching program size lower bounds for FT 4
2(k) in various restricted models,

and examining a variety of different proof techniques that may prove to be useful in attacking more general

problems surrounding the TEP. One of the next steps in this line of research may be to extend these lower

bounds to general branching programs solving the height 4 TEP. This would be a major achievement in

itself, and may provide some insight into how one might extend these results further to prove strong space

lower bounds for the general Tree Evaluation Problem for trees of arbitrary height, bringing us a step closer

to settling the question of whether L equals P.

References

[1] S. M. Chan, J. Cook, S. Cook, P. Nguyen, and D. Wehr. New results for tree evaluation. Work in

progress. Dec. 2010.

[2] S. Cook, P. McKenzie, D. Wehr, M. Braverman, and R. Santhanam. Pebbles and branching programs

for tree evaluation. ACM Trans. Comput. Theory, 3(2):4:1–4:43, Jan. 2012. issn: 1942-3454. doi: 10.

1145/2077336.2077337.

[3] D. Liu. Pebbling arguments for tree evaluation. CoRR, abs/1311.0293, 2013.

9

