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Local Profile Queries: How many people know two spies who 
don’t know each other?

Subgraph Counting Queries: How many triangles are there 
involving at least one spy?
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Hypothesis H encodes beliefs about the database.
e.g. Every node has degree at most k = 5000

RS f (H) = max

D1,D22H

✓ |f(D1)� f(D2)|
d(D1, D2)

◆

Length of shortest chain of 
neighbouring databases 

between D1 and D2
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Restricted sensitivity is often much smaller than global 
sensitivity. 

When possible: add noise proportional to RSf (H)
‣ Achieve better accuracy when H is true.

‣ Still maintain privacy, even if H is false.

Goal: Given a query  
Define a new query         such that

f : D ! R
fH

fH(D) = f(D) 8D 2 H
GS fH = RS f (H).

and
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GENERAL CONSTRUCTION

For each               setD 2 H fH(D) = f(D)

D \ H = {D1, D2, . . . , Dm}
Define fH(Di) inductively. Ti = H [ {D1, . . . , Di}.

Choose                    such that
|fH(D)� fH(Di+1)|

d(D,Di+1)
 RS fH(Ti) 8D 2 Ti.

fH(Di+1)

Need a bit of calculation 
to show that this exists.
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Choose                    such that
|fH(D)� fH(Di+1)|

d(D,Di+1)
 RS fH(Ti) 8D 2 Ti.

fH(Di+1)

If no such value exists, then there would be some                       such thatD⇤
1 , D

⇤
2 2 Ti

2 · RS fH(Ti)d(D⇤
2 , Di+1)2 · RS fH(Ti)d(D⇤

1 , Di+1)

fH(D⇤
1) fH(D⇤

2)

|fH(D⇤
1)� fH(D⇤

2)|
d(D⇤

1 , D
⇤
2)

� |fH(D⇤
1)� fH(D⇤

2)|
d(Di+1, D⇤

1) + d(Di+1, D⇤
2)

> RS fH(Ti).Then

(Contradiction)
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Subgraph counting: Given connected graph H, predicates p1, . . . , pt,

f(G, `) = |{{v1, . . . , vt} : G[v1, . . . , vt] = H and 8i, `(vi) 2 pi}| .

RS f (Hk)  tkt�1.For subgraph counting queries,
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SMOOTH PROJECTIONS

General construction is really inefficient, only works for one 
query at a time.
‣ Want a canonical projection                     such thatµ : D ! H µ(D) = D 8D 2 H.

fH = f � µ.‣ Then set 

Projection is c-smooth if             neighbouring impliesD,D0 d(µ(D), µ(D0))  c.

Lemma. If µ is c-smooth, then GS fH  c · RS f (H).

Proof. GS fH = max

D1⇠D2

|f(µ(D1))� f(µ(D2))|

 max

D1⇠D2

|f(µ(D1))� f(µ(D2))| c

d(µ(D1), µ(D2))

 c max

D1,D22H
|f(D1)� f(D2)|

d(D1, D2)

= c · RS f (H).
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PUTTING IT TOGETHER

For any query f, in the edge adjacency model, the mechanism

satisfies          -differential privacy.(", 0)

For local profile queries, RS f (Hk)  2k + 1 ⌧ n.

M(G, f) = f(µ(G)) + Lap

✓
3 · RS f (Hk)

"

◆

(In the edge adjacency model)
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SUMMARY

Natural queries on social networks have high global sensitivity.
‣ Require lots of noise to preserve privacy.

By choosing the right hypothesis, we can reduce the 
restricted sensitivity.

‣ We can add less noise to preserve privacy.
‣ Can achieve better accuracy when H is true.
‣ Still preserve privacy, even if H is false.

For graphs of bounded degree, we can efficiently reduce the 
noise needed, using smooth projections.


