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Local Profile Queries: How many people know two spies who
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Subgraph Counting Queries: How many triangles are there
involving at least one spy?
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Hypothesis H encodes beliefs about the database.
e.g. Every node has degree at most £ = 5000

RS;(H) = max (\f<D1> . f(Dz)|>

d(D+, D)

\ Length of shortest chain of

neighbouring databases
between D and D>



RESTRICTED SENSITIVITY TO REDUCE NOISE

Restricted sensitivity is often much smaller than global
sensitivity.

When possible: add noise proportional to RS (H)

» Achieve better accuracy when #H is true.

» Still maintain privacy, even if H is false.



RESTRICTED SENSITIVITY TO REDUCE NOISE

Restricted sensitivity is often much smaller than global
sensitivity.

When possible: add noise proportional to RS (H)

» Achieve better accuracy when #H is true.

» Still maintain privacy, even if H is false.

Goal: Givenaquery f: D — R
Define a new query f;, such that

fu(D) = f(D) VD eH and
GS:. = RS (H)
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Foreach D € H set fy(D) = f(D)

Arbitrarily order elements of D\ H = {D1, D>, ...

Define f, (D;) inductively. 7, = HU{Ds,...,D;}.

Choose f#(D;11) such that
(D) = fu(Dit1)]

d(D; Dit1) \

Need a bit of calculation
to show that this exists.

< RSy, (73) VD € 7;.
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GENERAL CONSTRUCTION CONT'D

Choose f#(D;11) such that

| f1(D) = fr(Diy1)
d(D,D,H_l)

< RSf,H (7;) VD & 7;

If no such value exists, then there would be some D7, D; € 7T; such that

fu (D7) fu(D3)
_ —_
2. RS}, (T)d(D}, Dis1)  9.RS;, (T)d(D}. Disy)

(Contradiction)
FDD) — (D) (D7) — (D) -

Then > > RS+, (T5).
e d(D1, D3) d(Diy1, DY) + d(Dis1, D) 72 (T:)
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For local profile queries, RSy(Hi) < 2k + 1 (Vertex adjacency)

RS¢(Hr) <k+1 (Edge adjacency).

Subgraph counting: Given connected graph H, predicates P1,---,Dt;
f(G,0) = |{{v1,...,v¢} : Glog,...,v] = H and Vi, l(v;) € p; } -

For subgraph counting queries, RS ;(H) <tk'™'.
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SMOOTH PROJECTIONS

General construction is really inefficient, only works for one
query at a time.

» Want a canonical projection ¢ : D — H such that u(D) =D VD e H.
» Thenset fi = f o p.

Projection is c-smooth if D, D’ neighbouring implies d(u(D), (D)) < ec.

Lemma. If piis c-smooth, then GS¢, <c- RS¢(H).

Proof. GS g, = max |f(pu(D1)) — f(u(D2))

Di~Do

< max f(1(D1) = F(u(D)| s —py

| f(D1) — f(D2)|
= CDlr,rll)aQ}éH d(Dl, DQ)

=c- RS (H).
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PROJECTION SCHEME FOR 7. (In the Edge Adjacency Model)

Fix a canonical ordering over all possible edges.

For each node v with deg(v) > k, delete all but the first &

edges incident to .

Claim. This is a 3-smooth projection.
Proof. Suppose Gi, G» differ on a single edge e = (z,y) € E(G1).

If 1 deletes ethen u(G1) = pu(G2). Otherwise,
T
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PUTTING IT TOGETHER

For any query f, in the edge adjacency model, the mechanism
3. Rsf(m)>

E

M(G, f) = f(u(G)) + Lap (

satisfies (&, 0)-differential privacy. (In the edge adjacency model)

For local profile queries, RS f(Hr) < 2k+1 < n.
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SUMMARY

Natural queries on social networks have high global sensitivity.

» Require lots of noise to preserve privacy.

By choosing the right hypothesis, we can reduce the
restricted sensitivity.

» We can add less noise to preserve privacy.
» Can achieve better accuracy when H is true.

» Still preserve privacy, even if #H is false.

For graphs of bounded degree, we can efficiently reduce the
noise needed, using smooth projections.



